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Executive Summary 

1. Rivers are complex ecosystems closely linked to the adjoining land, upstream 

catchment, and downstream reaches. As a consequence, managing them to ensure 

they remain healthy while balancing other potential uses for river water is extremely 

challenging. 

2. To assist Te Whaitua o Kāpiti with developing the Whaitua Implementation 

Programme (WIP), a Bayesian Belief Network model was developed from data and 

expert opinion from the Western science and Mātauranga Māori perspectives. 

3. Measures of model fit to the data indicated the BBN was adequate but better at 

predicting A and D states than B and C states for MCI, QMCI and Fish IBI. 

4. This allowed the committee to explore quantitatively what attribute thresholds (e.g., 

National Policy Statement for Freshwater Management attribute states) were most 

likely to produce the ecological and cultural health outcomes desired for those 

waterways as determined by the Whaitua Kāpiti committee. This was done for each of 

the FMUs in turn. 

 

 

 

  



Introduction 

The Greater Wellington Regional Council's Whaitua process involves developing a 

management document for freshwater in each Whaitua after considerable discussion with a 

committee representing the views of the general public, tangata whenua, subject area experts, 

and regional council staff. The Whaitua Kāpiti Implementation Programme (WIP) (Greater 

Wellington, 2024) documents the collective recommendations of Te Whaitua o Kāpiti 

Committee (Committee) and seeks to focus the attention of decision-makers on Te Mana o te 

Wai so “the balance between the water, the wider environment and the community are 

restored and preserved.” 

 

As the lifeblood of our ancestor Papatūānuku, we need to ensure our awa are well. Why 

would we allow our ancestor to remain in the hospital, only to make her partially well again? 

We want her to be well and functioning. 

 

The Treaty House framework was used for developing the Kāpiti WIP. The Te Tiriti 

House model is a framework for enacting Te Tiriti o Waitangi / Treaty of Waitangi (Te 

Tiriti). Many view the agreements within Te Tiriti as a partnership between Rangatiratanga 

and Kāwanatanga. In Te Whaitua o Kāpiti process, the Rangatiratanga were represented by 

six tangata whenua from regional hapū and iwi. The Kāwanatanga were represented by six 

members of the local community. 

Although it is laudable that the National Policy Statement for Freshwater Management 

seeks to develop specific localised community aspirations for their waterways within the 

constraints of the ecological health framework set out in the document, it is extremely 

challenging for the general public to effectively understand the data and science of complex 

freshwater ecosystems to make informed decisions about rules on waterway health. For 

example, how can a citizen understand how differing instream nitrate levels are affected by 

different types of land use and/or how those concentrations impact ecological health? These 

questions are challenging enough for scientists who have spent a lifetime researching them 

(Canning & Death, 2023). Furthermore, stressors on freshwater ecosystems seldom act in 

isolation but can interact in unexpected ways to impact ecological health (Ormerod et al., 

2010;  Davis et al., 2018). 



To assist the committee in understanding the impacts of differing levels of individual 

stressors on measures of waterway ecological health and how the stressors may potentially 

interact to affect the ecological health of streams and rivers, a Bayesian Belief Network 

(BBN) was developed for streams and rivers in Whaitua Kāpiti. This report describes the 

development of the BBN model that was used to assist the committee in its decision-making 

process. 

Bayesian Belief Networks (BBNs) are a graphical, rule-based probabilistic modelling 

technique that is a widely used research and management tool (e.g., (McCann, Marcot & 

Ellis, 2006;  Uusitalo, 2007;  Pourret, Naim & Marcot, 2008;  Death et al., 2015b). In 

environmental management, BBNs can provide a useful visual depiction of the causal 

linkages between multiple environmental drivers and the state of ecological health (Aguilera 

et al., 2011;  Allan et al., 2012). They also allow managers to model changes in those drivers 

to explore the effects on the condition of that ecological state (McCann, Marcot & Ellis, 

2006). For example, a BBN can be used to investigate how changes in land use may directly 

and/or indirectly alter a measure of invertebrate ecological health such as the MCI (Death et 

al., 2015b). BBNs have several advantages: 1) their graphical structure allows easy 

interpretation by non-modellers (McCann, Marcot & Ellis, 2006); 2) they can be used with 

incomplete data sets (Uusitalo, 2007); 3) they can incorporate expert knowledge (Pollino et 

al., 2007;  Uusitalo, 2007);  4) they can combine categorical and continuous variables 

(Marcot et al., 2001); 5) there is an explicitly documented level of uncertainty (Uusitalo, 

2007); 6)  they can predict in both directions (e.g., water quality can be predicted from the 

biota present and can also predict what biota will be present with different conditions; 

(Paisley et al., 2011); and 7) relatively inexpensive, user-friendly software allows BBNs to be 

constructed. One major drawback of available software for BBNs in environmental science is 

arguably the requirement to discretise continuous variables, as most environmental data is 

continuous rather than discrete; however, the NPSFM (2000) that forms the basis for the 

direction of the management of freshwater resources in New Zealand has inbuilt discrete 

categories in the form of A, B, C, and D class waterways (Government, 2020b). 

The Treaty House approach for developing the Kāpiti WIP also meant that Western 

Science data and measures needed to be integrated with Mātauranga Māori data and 

measures. I believe the discretised probabilistic nature of BBNs lends itself to the frameworks 

often used in Mātauranga Māori science, where observations are often more qualitative, e.g., 

a stream has enough suitable tuna for harvesting or it doesn't (Hikuroa, 2017). Data from 



research by the Māori scientists in the Whaitua Kāpiti committee was also integrated into the 

BBN framework. Interestingly, this also included assessments from the social science of awa 

hauora using the concept of Environmental Distress Score developed by Te Ātiawa ki 

Whakarongotai. There appeared to be no similar Western Science data of this aspect of 

waterway health that could be incorporated into the model. 

 

Purpose 

Whaitua Kāpiti is tasked with developing freshwater attribute limits for their awa freshwater 

management units. To assist with this process a machine-learning model using Bayesian 

probabilities was developed that represents the current state of these attributes in the 

catchment. The model allowed Kāpiti Whaitua committee members to investigate the effects 

of particular attribute states (i.e., in bands A-D) on achieving potential desired freshwater 

values. For example, what nitrate thresholds would be needed in a waterway to ensure an 

agreed-on state of ecological health? The model provides evidence-based guidance—but not 

decisions—on attributes and/or their preferred numerical states. 

 

BBN model construction 

An initial simplified model network adapted from a BBN constructed for the Manawatu 

River and using Western Science (Death et al., 2015b), was presented to the committee for 

consideration at a hui held on October 12, 2023. The committee debated additional attributes 

that should be added to the Kāpiti WIP model, and where they were deemed appropriate, they 

were added to the network framework. One of the challenges with building models using 

artificial intelligence algorithms is that a reasonable representation of data is required to make 

accurate predictions. This includes both the quantity of data and examples of all states of 

concern. For example, although there was good information on waterways in most land uses, 

there was no data from waterways with a rural lifestyle land use; consequently, no 

assessments of this land use are possible. However, public concerns about waterway 

management often arise from individual observations of adverse events. For example, the 

discharge from the Waikanae sewage treatment plant is a major point of concern for tangata 

whenua, but there is only one such discharge, so modelling its impacts with AI learning is 

impossible. As Einstein explains "Models should be as simple as possible, but no simpler". 

So, for many of the issues of concern raised by the committee, there were not enough 



examples and/or data available to include them in the BBN model (see below for more 

detail). It was also not possible to include wetlands, lakes or groundwater in the model, again 

because of lack of data and/or expertise. The model framework delivered by this process is 

presented in Figure 1.  



 

Figure 1 Original BBN model framework developed by Whaitua Kāpiti  committee in October 2023. 



Data and model attribute states 

The compulsory attributes, and attribute states, from the National Policy Statement for 

Freshwater Management were used unless Whaitua Kāpiti  determined otherwise 

(Government, 2020b). For some variables of interest surrogates with more data and/or 

scientific knowledge will be used as agreed by Whaitua Kāpiti, e.g., campylobacter rather 

than campylobacter-free watercress. Some variables of concern to Whaitua Kāpiti outside the 

scope of this model, e.g., wetlands, lakes, and groundwater, will be included in the model as 

potential influencers/environmental outcomes whose impact is unknown or unquantified. 

They will not be linked to the model but just represented visually as a reminder of some 

unknowns. In some cases, variables/outcomes of concern will be excluded (by Kāpiti 

Whaitua agreement) if they represent situations that are rare or uncommon, e.g., there was 

data on only one intermittent water abstraction so the impacts of flow alteration could not 

effectively be incorporated in the model. This is because the modelling of such cases is 

beyond the abilities of this model. 

Wherever possible, data provided by Greater Wellington Regional Council will be used to 

build and/or evaluate the model. However, machine learning models perform better with 

more data, even when outside the specific region of concern. For example, the BBN model 

built for the Manawatu River using data from Hawkes Bay, Taranaki, Whanganui, 

Wellington and Waikato was a better fit to the data (and thus provided more accurate 

predictions) than one built from data just from the Manawatu (Death et al., 2015b). 

Ecological processes and relationships do not change simply by moving from one catchment 

to another. Only the observed outcomes of those processes potentially change as stressors 

alter, e.g., land use change. If there are situations where models will be improved by 

including data from outside the region, this was achieved with other data from Greater 

Wellington, Ministry for the Environment and Russell Death. This was done for MCI and 

QMCI data. 

In some cases, quantitative data does not exist for particular variables of concern to the 

committee in a conventional Western science database, particularly with respect to mahinga 

kai, and social and cultural drivers/outcomes. In these cases, expert knowledge was used 

(Greer et al., 2023). For example, nitrate thresholds in the model attribute were based on 

expert opinion derived from previous research (Government, 2020a;  Canning & Death, 

2023) However, quantitative data will be used whenever available. This process also 

highlighted opportunities for further data gathering relevant to Whaitua Kāpiti management. 



Attribute state and source data 

The information source for the states used in each of the attribute boxes in the BBN is listed 

below along with the source of the data that populates each of the states in the model. 

Attribute State source Data source 

Upstream Landuse REC River Environment 

Classification (Snelder & 

Biggs, 2002) 

REC. 

High vs low intensity relates 

to Dairy vs Sheep & Beef 

(Larned et al., 2018) 

Riparian zone Presence/absence SegRipNative in Freshwater 

Ecosystems of New Zealand 

(FENZ) (Leathwick et al., 

2010). Threshold 

SegRipNative > 0.5 or 

Indigenous forest. 

Habitat Quality Index (HQI) Whaitua committee (Death et al., 2015a;  Fuller 

et al., 2021) 

DRP Phosphorus NPSFM (Larned, Snelder & Unwin, 

2017) 

Nitrate Nitrate for ecological health 

in the Draft NPSFM. Note 

this is not the toxicity 

attribute in the current 

NPSFM 

(Larned, Snelder & Unwin, 

2017) 

E. coli NPSFM (Larned, Snelder & Unwin, 

2017) 

Deposited Sediment NPSFM (Clapcott & Goodwin, 2017) 

MCI/QMCI NPSFM GW data 

(Death et al., 2015b) 



Ecological health Russell Death expert 

knowledge 

Russell Death expert 

knowledge 

Periphyton NPSFM Not included because of lack 

of information. 

Macrophytes Presence/absence Not included because of lack 

of information. 

Fish IBI NPSFM New Zealand freshwater fish 

database  

Harvestable Tuna Caleb Royal expert 

knowledge 

Caleb Royal pers comm. 

Mahinga kai discussion 

paper 2024 

Campylobacter  Presence/absence (Phiri et al., 2020) 

Knowledge transfer Mana Whenua House expert 

knowledge 

Mahinga kai discussion 

paper 2024 

Connection Mana Whenua House expert 

knowledge 

Mahinga kai discussion 

paper 2024 

Hapū environmental distress Mana Whenua House expert 

knowledge 

Mahinga kai discussion 

paper 2024 

Cultural health Mana Whenua House expert 

knowledge 

Mahinga kai discussion 

paper 2024 

 

 

Final BBN model used in Kāpiti Whaitua deliberations 

The model BBN that was constructed using available data and expert knowledge is presented 

in Figure 2. The values in each of the attribute states in the boxes represent the percentage 

distribution of the data used for the model construction. 



 

Figure 2 BBN model used for Kāpiti Whaitua committee deliberations. 

 



Model construction and testing 

The BBN was constructed using NeticaTM 6.09 (Pourret, Naim & Marcot, 2008). The 

network of interconnected variables is represented as a series of nodes. Conditional 

Probability Tables (CPTs) were developed with the expectation-maximization algorithm (EM 

Learning) in NeticaTM from the compiled data. The expectation–maximization (EM) 

algorithm is an iterative method for finding maximum likelihood estimates of parameters in 

statistical models, where the model depends on unobserved latent variables (Do & Batzoglou, 

2008). CPTs calculate the probability of each state in a node occurring, given each 

combination of conditions in the parent (input) nodes (Pourret, Naim & Marcot, 2008).  

Models were evaluated by hold-out validation with a randomly selected 10% subset of the 

training data. There is a wide range of metrics that can be used to evaluate model fit and 

performance (for a detailed review see (Witten, Frank & Hall, 2011;  Marcot, 2012)). We 

used several commonly used metrics that assess both raw predictive ability and ability 

relative to occurrence. The percentage of incorrect predictions (percent error) is a simple, 

easily understood metric but is sensitive to the number and size of the nodes. For example, if 

you have a very common state in the node and predict it will always occur (P=1.0) then you 

have a high probability of being correct simply because it usually occurs. Area under receiver 

operating characteristic curves (AUC) attempt to correct for this by plotting true positives 

against false positives to search for a balance between sensitivity and specificity (Hand, 

1997). They range from 1 to 0, with 0.5 denoting totally random models and >0.5 

improvement on random (Marcot, 2012). The logarithmic loss score (Dlamini, 2010) was 

used to compare BBNs of alternate architecture (which boxes are linked to each other, and in 

what direction). The index ranges from 0 to infinity, with 0 being the best possible score.  

 

Model performance 

There was data on mahinga kai and cultural health at 18 sites. This is arguably too limited a 

data set to get an accurate assessment of model predictions, so model performance was 

assessed only with the Western Science components of the model. 

 The BBN had a logarithmic loss score of 7.49 (this ranges from 0 to infinity, with 0 the 

best possible score). This is higher than the 0.72 log loss score for the Manawatu QMCI BBN 

(Death et al., 2015b) but with the available data, this was the best architecture achievable. 



 The area under receiver operating characteristic curves (AUC) for three key attributes 

(MCI, QMCI and IBI) are presented in Table 1. All attributes performed well, although the 

MCI attribute was narrowly the best. Similarly, the percentage of correct predictions from a 

leave-one-out cross-validation process was good and best for the QMCI and A and D states. 

Predictions for intermediate states of B and C were, however, poor for all three attributes. 

    

Table 1Measures of performance of BBN for MCI, QMCI and IBI 

Attribute State AUC 

Percentage correct in 

model 
Percent correct by chance 

MCI A 0.84 89 23.7 

 B 0.66 25 28.8 

 C 0.74 42 25.3 

 D 0.87 57 22.3 

 Overall 0.78 53  

QMCI A 0.82 86 31.4 

 B 0.58 3 15.3 

 C 0.67 17 18 

 D 0.79 72 35.3 

 Overall 0.72 58  

Fish IBI A 0.73 78 25.3 

 B 0.58 19 32.2 

 C 0.55 0 23.3 

 D 0.77 77 19.2 

 Overall 0.66 47  

 

I would consider the BBN model overall to be adequate but not excellent, particularly as it 

was poor at predicting alternate states of an intermediate nature. The BBN model, however, is 

excellent at differentiating between good (A) and bad (D, below the environmental bottom 

line) states. Interestingly, the low predictability with the intermediate B and C states probably 

reflects that the distinction between B and C states is subtle with respect to how 

environmental drivers can impact those states. Sites incorrectly predicted as B were often C, 

and those predicted to be C were often B. A model with a single intermediate state would 

probably have been excellent, but this would not have been consistent with the NPSFM 

framework. That there was a subtle distinction in the B and C states for several ecological 

health measures was conveyed to the committee for their deliberations. For example, I 

explained that, in my opinion, a shift in MCI from a C to a B would require a modest change 

in environmental conditions, but achieving an A would require a much larger change. 



Similarly, raising a site from a D to a C was likely to require a major change in the prevailing 

environmental state. 

 

Model use by the Committee 

Models are usually used in environmental science to inform what might happen with a 

particular change in the environment. Predictions from a given set of conditions inform 

possible outcomes; for example, a model could predict how much the ecological health of a 

waterway would decline if nitrate levels rose. In contrast, the committee used the model to 

forecast what environmental parameters would be required to yield a particular outcome. 

Thus, for each Freshwater Management Unit (FMU), a desired state of A, B, or C for MCI, 

QMCI or IBI was designated by the consensus opinion of the committee based on the 

existing state and input into the model. The states for nitrate, DRP, and deposited sediment 

for that FMU were then determined from the highest probability predictions in the model 

states which achieved the desired state for MCI, QMCI, or IBI. This is the advantage of BBN 

models: they can predict in both directions (e.g., water quality can be predicted from the biota 

present and can also predict what biota will be present with different conditions). Although 

one could potentially argue the BBN model is not as accurate as it could be for precise 

predictions, it is certainly better than if citizen committees are making similar decisions with 

only qualitative statements from experts and/or quantitative data in reports. 

 

Conclusion 

The BBN model constructed for advising the Whaitua Kāpiti committee was very accurate at 

predicting the A and D states of ecological health attributes, but poor at distinguishing 

intermediate B and C states. However, the ability of the model to back-forecast from a 

desired ecological health state (decided by the committee) allowed them to make data-based 

objective decisions about what nitrate, DRP and deposited sediment states would be required 

to achieve those waterway health outcomes. 
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